Центр справки и настройки Windows XP 3.8

         

Время доступа к данным


Наверх

Время доступа к данным
Время доступа к данным по сути - это комбинация из времени поиска, времени переключения головок и задержки позиционирования, измеряется также в миллисекундах (ms). Время поиска, как вам уже известно, это только показатель того, как быстро головка оказывается над нужным цилиндром. До тех пор, пока данные не записаны или считаны, следует добавить время на переключение головок и на ожидание необходимого сектора.

Наверх

Кэш-память на жестком диске
Как правило, на всех современных жестких дисках есть собственная оперативная память, называемая кэш-памятью (cache memory) или просто кэшем. Производители жестких дисков часто называют эту память буферной. Размер и структура кэша у фирм-производителей и для различных моделей жестких дисков существенно отличаются. Обычно кэш память используется как для записи данных так и для чтения, но на SCSI дисках иногда требуется принудительное разрешение кэширования записи, так обычно по умолчанию кэширование записи на диск для SCSI запрещено. Есть программы, позволяющие, определить, как установлены параметры кэш-памяти, например

ASPIID от фирмы Seagate. Как это многим не покажется странным, размер кэша не является определяющим для оценки эффективности его работы. Организация обмена данными с кэшем более важна для повышения быстродействия диска в целом.

Некоторые производители жестких дисков, такие как Quantum, используют часть кэша под свое программное обеспечение (для модели Quantum Fireball 1.3 Gb, например, под firmware занято 48 Kb из 128). Как нам кажется, более предпочтителен способ, используемый фирмой Western Digital. Для хранения firmware используются специально отведенные сектора на диске, невидимые для любых операционных систем. По включению питания эта программа загружается в обычную дешевую DRAM на диске и при этом отпадают затраты на микросхему флэш-памяти для хранения firmware. Такой способ позволяет легко исправлять встроенное программное обеспечение жесткого диска, что часто фирма

Western Digital и делает.

Наверх

<
Размещение данных на диске
О том, что конфигурация диска задается через количество цилиндров, головок и секторов на дорожке, все знают с начала эпохи PC. Хотя еще несколько лет тому назад точное указание в программе SETUP всех этих параметров диска было обязательным, сейчас это не так. Строго говоря, те параметры диска, которые вы видите в разделе SETUP Standard CMOS Setup, как правило, ничего общего не имеют с реальными параметрами диска, причем вы можете заметить, что эти параметры меняются в зависимости от вида трансляции геометрии диска - Normal, LBA и Large. Normal - геометрия в соответствии с данной производителем в документации на диск и не позволяет DOS увидеть более чем 504 Mb (1 Mb - 1048576 байт). LBA - Logical Block Address - эта установка позволяет видеть DOS диски объемом до 4 Gb. Large используется такой операционной системой, как Unix. Параметры, установленные в SETUP, преобразуются в реальные логикой управления жестким диском. Многие современные операционные системы работают с диском через LBA, минуя BIOS.

Наверх
Скорость обмена между процессором и диском
Существует несколько способов физического сохранения данных на жестком диске. Определить способ отображения данных на диске можно, только используя различные программы определения быстродействия диска (benchmark). В программу Winbench 98/99 включен High-end тест жесткого диска, где оцениваются не достаточно отвлеченные в настоящее время 2 параметра - скорость передачи данных и время доступа, а проверяется, для каких задач и для каких наиболее популярных программ, активно работающих с диском, диск наиболее пригоден. Этот тест можно получить на сервере фирмы

Ziff-Davis
.
" Вертикальное отображение"



Обычные жесткие диски используют вертикальное отображение. Данные записываются сначала на одном цилиндре сверху вниз, затем головки переходят на другой цилиндр и т.д.

"Горизонтальное отображение"



При горизонтальном отображении сначала данные записываются последовательно от цилиндра к цилиндру на поверхности одного диска, затем также на поверхности следующего диска и т.д. Такой способ лучше подходит для записи непрерывного высокоскоростного потока данных, например, при записи живого видео.

 

"Комбинированный"



Комбинированный способ отображения, использующий как вертикальный так и горизонтальный способ.

При тестировании таких дисков видно, что чем дальше от начальных цилиндров, тем хуже параметры диска. Это связано с тем, что на внешних дорожках размещается больше секторов и считывание/запись выполняется быстрее.

В справедливости этого легко убедиться, запустив Winbench 97/98/99, выбрав сначала диск C для теста диска, а затем последний логический диск (желателен диск объемом не менее 2.5 Gb). Разница в оценке быстродействия диска для модели WD AC32500 составила 15%!

Реально диск разделен на зоны, в каждую из которых входит обычно от 20 до 30 цилиндров с одинаковым количеством секторов. Эти зоны также называются "notches".

Чем выше плотность записи на диск, тем выше будет скорость считывания с него. Именно поэтому при оценке параметров диска следует внимательно смотреть на внутреннюю скорость передачи данных. Внутренняя скорость передачи данных прямо пропорциональна плотности записи на диск и скорости вращения шпинделя. Так как увеличивать скорость вращения диска достаточно сложно - увеличивается энергопотребление, шум, возникают проблемы с теплоотводом, то наиболее оптимальный путь повышения производительности - это увеличение плотности записи на диск. Именно поэтому современный жесткий диск со скоростью вращения 5400 об/мин легко опережает по производительности диск с 7200 об/мин, выпущенный двумя годами ранее. Все производители жестких дисков в первую очередь и заняты проблемой повышения плотности записи. При прочих равных условиях, из двух накопителей равной емкости быстрее будет работать накопитель с меньшим количеством дисков, т.е. с большей плотностью записи.

Наверх
<


Интерфейс (IDE или SCSI)
Сейчас фактически осталось только два действующих интерфейса: IDE (распространенный сейчас в варианте Enhanced IDE - EIDE) и SCSI. На любой материнской плате, выпущенной после 1996 года, можно обнаружить контроллер EIDE. Это, а также существенно более низкая стоимость IDE дисков по сравнению со SCSI объясняет значительное превосходство IDE дисков в количественном выражении над SCSI.

Каждый контроллер EIDE имеет два канала (primary - первичный и secondary - вторичный), к каждому из которых можно подключить до двух устройств (всего четыре). С интерфейсом IDE в настоящее время, кроме жестких дисков, выпускаются также приводы CD-ROM, накопители Iomega Zip, накопители на магнитной ленте. Интерфейс SCSI, как правило, требует отдельного контроллера, так как пока очень незначительное количество материнских плат выпускаются с контроллером SCSI. Сканеры, магнитооптические накопители, устройства записи для CD и т.п. выпускаются как с интерфейсом SCSI, так и с IDE. При принятии решения о покупке жесткого диска с тем или иным интерфейсом, следует учесть главное - если вам не требуется подключение нескольких жестких дисков, ваш компьютер не является сервером или мощной рабочей станцией, ресурсы которой доступны другим пользователям, SCSI диск НЕ ДАСТ НИКАКИХ ОЩУТИМЫХ ПРЕИМУЩЕСТВ по сравнению с EIDE диском. Это правило, естественно, справедливо для одинаковых по физическим характеристикам дисков. Выигрыш будет только в снижении нагрузки на центральный процессор за счет использования процессора SCSI контроллера. Интерфейс SCSI позволяет подключать до 7 устройств, а Wide SCSI до 14 устройств. Существуют также многоканальные SCSI контроллеры, позволяющие подключить и большее количество устройств.

Основной недостаток интерфейса EIDE - отсутствие "интеллекта". Если на одном канале подключены жесткий диск и накопитель CD-ROM, то в случае обращения к CD-ROM процессор будет ожидать завершения операций с CD-ROM, прежде чем сможет обратиться к жесткому диску. Поэтому очевидно, что нельзя к одному каналу EIDE подключать быстрое и медленное устройство одновременно. CD-ROM всегда следует подключать только ко второму каналу. Каналы EIDE в современных контроллерах EIDE, как правило, достаточно независимы друг от друга. Для повышения производительности EIDE были разработаны и стандартизованы режимы PIO (Programming Input Output - программируемый ввод/вывод), single word DMA (обмен одиночными словами в режиме DMA - Direct Memory Access - прямого доступа к памяти) и multi word DMA (обмен несколькими словами в режиме DMA).

SCSI интерфейс имеет несколько разновидностей, которые совместимы друг с другом (достаточно иметь пассивные переходники). 8 бит (50-ти контактный разъем) или 16 бит (68-и контактный разъем для Wide SCSI). Частота шины может быть 5 MHz (SCSI 1), 10 MHz (Fast SCSI), 20 MHz (Fast-20 or Ultra SCSI) or 40 MHz (Ultra-2 SCSI).

Сейчас стал активно внедряться стандарт Ultra2 SCSI LVD, являющийся разновидностью Ultra2 SCSI. Полное название стандарта - Ultra2 SCSI (LVD) Low Voltage Differential Parallel SCSI Interface, т.е. низковольтный дифференциальный параллельный SCSI интерфейс. Этот вариант SCSI существенно отличается от всех своих предшественников по двум параметрам:

Скорость передачи увеличена до 80 MB/s

Максимальная длина соединительного кабеля может достигать 12 метров

Кроме этого, к одному шлейфу можно подключить до 15 устройств. Обратная совместимость, как это принято для SCSI устройств, также выдерживается и устройство с Ultra2 SCSI LVD можно подключить к обычному контроллеру SCSI. С этим интерфейсом выпускаются только жесткие диски в вариантах с 68-контактным разъемом (Wide) и SCA.

Но и скорость в 80 MB/s, как оказалось, не является предельной на сегодняшний день. Уже начинает внедряться производителями как контроллеров, так и жестких дисков следующий вариант SCSI, называемый официально как SPI-3 (SCSI Parallel Interface - 3), неофициально Ultra160/m SCSI. Он разработан на базе Ultra2 SCSI LVD и отличается удвоенной скоростью передачи данных. Каким образом это достигнуто, видно из схематичной временной диаграммы.



По диаграмме ясно, что передача данных синхронизируется как по заднему, так и по переднему фронту сигнала ACK и, тем самым, скорость передачи удваивается по сравнению с Ultra2 SCSI LVD. На обычном SCSI (Ultra2) тактовая частота составляла 40 MHz, частота для данных 20 MHz и можно таким образом передать до 40 MBytes/s (так как за один цикл передается 2 байта), на Ultra2 SCSI LVD частота передачи данных была увеличена до 40 MHz и тем самым скорость обмена возросла до 80 MBytes/s.

Существенным отличием нового стандарта является только 32-х разрядный алгоритм CRC контроля передаваемых/принимаемых данных. Ранее в SCSI использовался только контроль по четности, да и его можно было легко отключить (что часто и делали) в BIOS SCSI контроллера. Новый алгоритм контроля позволяет обнаруживать ошибки в пакетах данных до 32-х бит длиной.

С более подробным разъяснением терминологии SCSI можно ознакомиться в "SCSI Глоссарии".

 

Содержание раздела